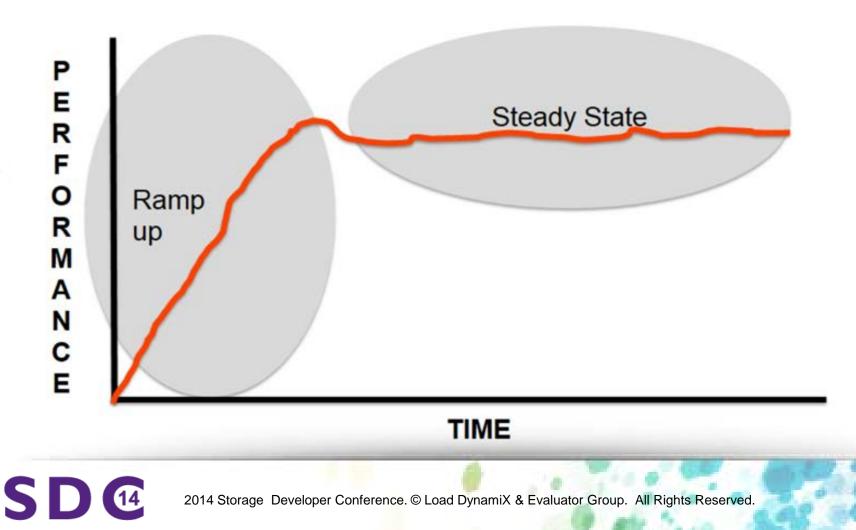


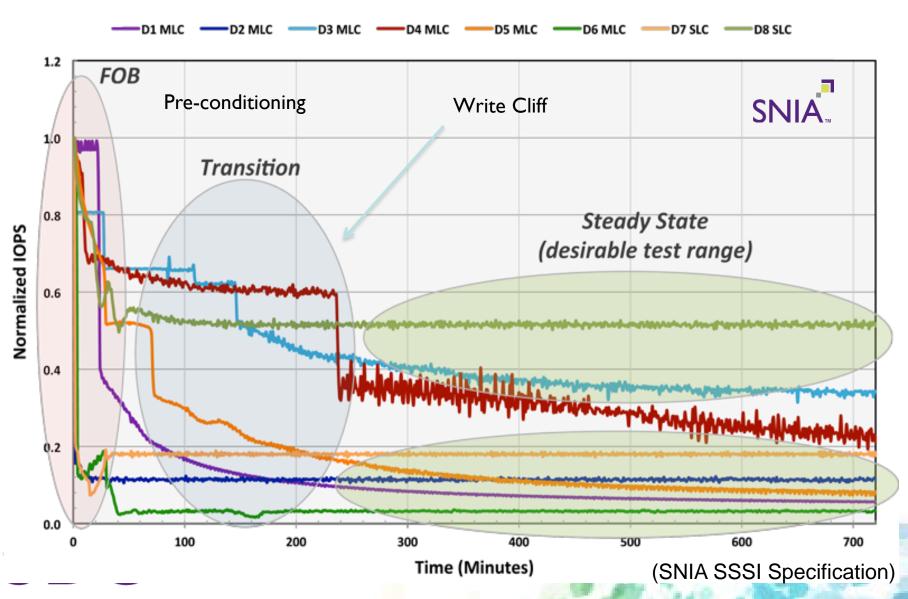
Deduplication, Compression and Pattern-Based Testing for All Flash Storage Arrays

> Peter Murray - Load DynamiX Leah Schoeb - Evaluator Group


Introduction

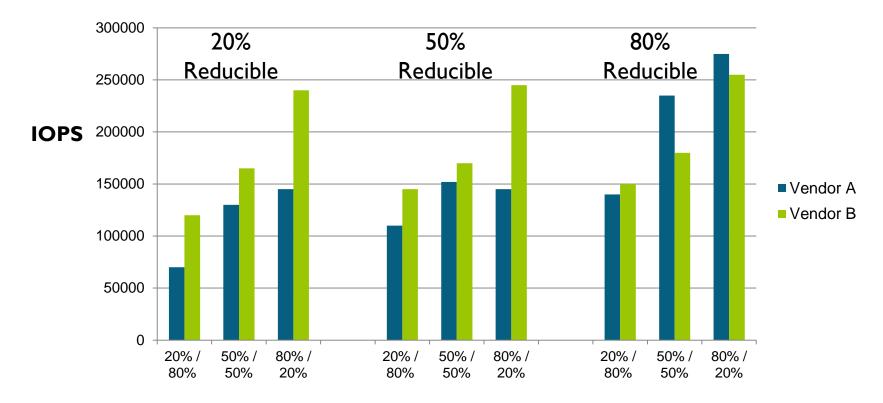
Advanced AFAs are a Different Animal

- Flash behavior is unique
- AFAs have a different performance curve
- Advanced AFAs do not merely store data
 - Most perform extensive metadata processing
 - Deduplication
 - Compression
 - Elimination of repeating character strings
- These new arrays require a new performance testing methodology



Traditional Disk Performance Curve

Flash Performance Variations

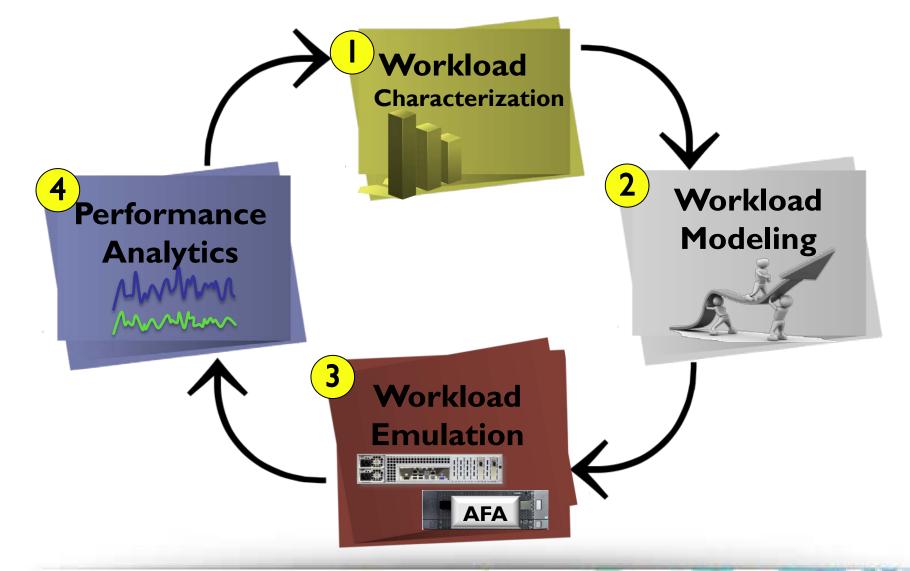

SSD Performance States - Normalized IOPS

Methodology In Action

IOPS Comparison for 3 Groups of Data Patterns & R/W Ratios

Which is best? Depends on your workload.

Read/Write Ratios


Implementing a Methodology to Achieve Realistic Workload Emulations

- Methodology is a means to an end
 - Effective application workload modeling
 - Benchmarks
- Validation takes SSS TWG methodology to a new level
 - Testing that emulates application workloads
 - Workload combinations that emulate the I/O blender
 - Requires complex testing capabilities
 - Requires correlated results

7

New Approach to Validating AFAs

Primary Methodology Elements For Testing an AFA

Deduplication

- Approaches vary by manufacturer
- Dedupe block size
 - Larger block size speeds processing
 - Smaller size can dedupe better, but requires more processing
- Ingest processing, post processing or both
- Deduplication in the presence of data skew

Compression

- Vendor implementations vary
 - Not as prevalent yet as deduplication
 - Increasingly being supported by vendors
- Performed during ingest
- Compression block sizes may increase overall compressibility
 - Vendor dependent

2014 Storage Developer Conference. © Load DynamiX & Evaluator Group. All Rights Reserved.

11

Eliminating Repeating Character Strings

Repeating characters stored as metadata
 Metadata identifies:

 Character
 Number of repetitions

 Performed during ingest

Methodology Overview

Methodology Elements

- Pre-conditioning
- Creating a realistic data set
- Writing to create an application data set on array
- Writing to exercise the array emulating an appropriate workload
- Other tests to emulate realistic, simultaneous writing and reading

Pre-Conditioning

Involves breaking in entire flash array

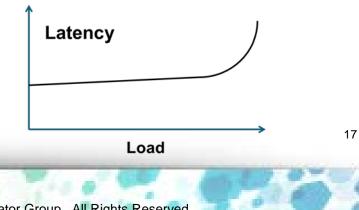
- Writing to every cell to achieve steady state
- Helps to ensure garbage collection during main test cycles
- □ Goal: create a realistic data set
 - Dedupeable and non-dedupeable blocks
 - Compressible and non-compressible blocks
 - Combined using varying block sizes
 - Written to emulate hot spots and drift
 - Written with appropriate dedupe/compression ratios

Write Performance Tests

Exercising array like an application does

- Writing at high load to find limits
- Writing using a data stream relevant to the data set
- Writing to emulate long-term application access

□ Goal: Exercising the array realistically


- Using a variation of the pre-conditioning data set
- Writing with same levels of data reduction
- Using multiple block sizes
- Including hot spots and drift to emulate temporality

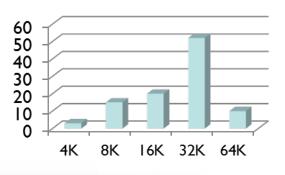
Read/Write Workload Tests Scenarios

Tests that write and read simultaneously

- All-write tests do not exercise an array the way an operating application does
- Reading must be combined with writing for realism
 - Tests using all-write data patterns, but reading also
- Run at expected application load
- "What if" testing to determine performance limits
 Magnifying the load to test future expected loads

Methodology Components

Block Size


Block sizes vary by application and operation
 25K-40K average block size is common
 But, no application uses uniform block sizes
 Sizes vary according to operations
 OLTP transactions typically small
 Analytics, reporting typically larger

Block Size (continued)

AFA methodology should reflect real access

- Single application
- □ I/O Blender (multiple, usually virtualized, applications)
- Either model requires multiple block sizes
- Should reflect application/blender access distribution

Block Size Distribution

2014 Storage Developer Conference. © Load DynamiX & Evaluator Group. All Rights Reserved.

20

Hot Spots / Hot Bands and Drift

Application access is not uniformly random

- Hot spots are storage locations accessed more frequently than others
- Hot spot regions drift over time
 - E.g. Index file growth as transactions are processed

Hot Spot examples:

- Index Files
- Temp Files
- Logs
- Journals

Hot Spots/Bands and Drift (continued)

■ Hot spot emulation example:

- □ 1% of all access regions receive 35% of the IOs
- 1.5% of all access regions receive 15% of the IOs
- 2.5% of all access regions receive 15% of the IOs
- □ 5% of all access regions receive 15% of the IOs
- 7% of all access regions receive 10% of the IOs
- 6% of all access regions receive 5% of the IOs
- 7% of all access regions receive 3% of the IOs
- □ 5% of all access regions receive 1% of the IOs
- 65% of all access regions receive 1% of the IOs

Access Patterns

Tests must reflect realistic access patterns

- Should emulate real applications
- Should avoid uniform random write distribution
- Should use multiple block sizes
- Should avoid unrealistic access patterns that skew towards systems that maintain larger amounts of reserve flash memory
- Should include testing in the presence of:
 - Backups
 - Snapshots
 - Replication

Complex Data Patterns

- Complex data patterns model workloads
- **D** Pattern types:
 - 🗖 Unique
 - Repeating
 - Uncompressible
 - Compressible
- Combined to represent data content representing:
 - Data set at rest after pre-conditioning
 - Data patterns that emulate traffic during operation

Data Content

- Data content patterns
 - Created before testing
- Data content streams
 - Written during testing
- Repeating and non-repeating patterns
 - Random
 - Compressible
- Varying pattern lengths

Thread Count and Queue Depth

- Both should increase during testing
- Should find max throughput for each:
 - Thread count (workers)
 - Queue depth (outstanding I/Os per worker)
- Should find max IOPs for each:
 - Thread count
 - Queue depth
 - Combination of threads and queue depth
- Should increase thread count/queue depths to find max array performance

New SNIA Technical Working Group

Solid State Storage System Technical Working Group (s4twg.snia.org) (s4twg@snia.org)

Solid State Storage System (S4) TWG

- Address the unique performance behavior of Solid State Storage Systems (S4)
- Measure performance of inline-advanced features
- Measure performance of enterprise arrays vs. devices
- System wide housekeeping vs device level
- Caching and DRAM tiering

Charter

- Identify, develop, and coordinate standards to enable accurate performance measurement for solid state storage systems
- Produce a comprehensive set of specifications and drive consistency of measurement guidelines and messages related to solid state storage systems
- Document system-level requirements and share these with other performance standards organizations

Program of Work

- The TWG will develop a specification for measuring the performance of solid state systems.
- The TWG will develop a specification focused on solid state storage systems that support inline advanced storage features that directly impact performance and the long term behavior of the array.
- Note: This will build upon process methodology developed by the SSS TWG

Summary

Summary

- All-Flash Arrays are unlike disk-based arrays
- Data reduction dramatically changes performance characteristics
- Tests must include rich data content to be valid
- Tests must model real-world access patterns

Summary

□ Tiered arrays are unlike all-flash arrays

- This methodology valid for arrays that implement data reduction, but may not be appropriate for tiered arrays
- A second methodology may be required, especially for tiered arrays that do implement data reduction
- Testing must be fair, unbiased and repeatable
 "One size fits all" may not be fair to tiered arrays

- <u>www.evaluatorgroup.com</u> "Measuring Performance of Solid State Arrays"
- <u>www.loaddynamix.com</u> "Go Daddy White Paper: Storage Validation"

